###
45-45-90 Triangles

To learn the pattern of the side lengths of a 45-45-90 triangle, students complete a gallery walk, a card sort activity starting with using the Pythagorean theorem, and activity to locate if there is an error in a presented problem and if so to identify what the error is.

###
Types of Motion

Students will distinguish between and/or interpret the types of motion.

###
Demonstration and Analysis of Dihybrid Crosses

The students will review related vocabulary, watch the teacher model a dihybrid cross, and then perform a dihybrid cross and answer questions about the outcomes with a partner.

###
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.

###
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.

###
Homeostasis: Ecological Systems

Given images, videos, or scenarios, identify and describe the responses of organisms, populations, and communities to various changes in their external environment.

###
Biological Systems: Homeostasis

Identify and describe internal feedback mechanisms involved in maintaining homeostasis given scenarios, illustrations, or descriptions.

###
Relationships Between Organisms: Food Chains, Webs, and Pyramids

Given illustrations, students will analyze the flow of matter and energy in food chains, food webs, and ecological pyramids.

###
Organisms' Adaptations

Given scenarios, illustrations. or descriptions, the student will compare variations and adaptations of organisms in different ecosystems.

###
Homeostasis—Succession

Given scenarios, illustrations, or descriptions, the student will identify the process of ecological succession and the impact that succession has on populations and species diversity.

###
Cell Homeostasis: Osmosis

The focus of this resource is cell homeostasis and, more specifically, osmosis. Students investigate the concept through a virtual lab, recording and analyzing data, creating sketches to represent vocabulary, and discovering the role of aquaporins in water transport through the cell membrane.

###
Newton's Three Laws of Motion

This resource provides alternate or additional learning opportunities for students learning the three Newton's Laws of Motion. It includes a collection of interactive materilas, videos, and other digital media. Physics TEKS, (4)(D)

###
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.

###
Creating Nets for Three-Dimensional Figures

Given nets for three-dimensional figures, the student will apply the formulas for the total and lateral surface area of three-dimensional figures to solve problems using appropriate units of measure.

###
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.

###
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.

###
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.

###
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.

###
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.

###
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.